Hilbert modules over pro-C*-algebras
نویسندگان
چکیده مقاله:
In this paper, we generalize some results from Hilbert C*-modules to pro-C*-algebra case. We also give a new proof of the known result that l2(A) is aHilbert module over a pro-C*-algebra A.
منابع مشابه
G-frames in Hilbert Modules Over Pro-C*-algebras
G-frames are natural generalizations of frames which provide more choices on analyzing functions from frame expansion coefficients. First, they were defined in Hilbert spaces and then generalized on C*-Hilbert modules. In this paper, we first generalize the concept of g-frames to Hilbert modules over pro-C*-algebras. Then, we introduce the g-frame operators in such spaces and show that they sha...
متن کامل*-frames in Hilbert modules over pro-C*-algebras
In this paper, by using the sequence of multipliers, we introduce frames with algebraic bounds in Hilbert pro-$ C^* $-modules. We investigate the relations between frames and $ ast $-frames. Some properties of $ ast $-frames in Hilbert pro-$ C^* $-modules are studied. Also, we show that there exist two differences between $ ast $-frames in Hilbert pro-$ C^* $-modules and Hilbert $ ...
متن کاملhilbert modules over pro-c*-algebras
in this paper, we generalize some results from hilbert c*-modules to pro-c*-algebra case. we also give a new proof of the known result that l2(a) is ahilbert module over a pro-c*-algebra a.
متن کاملOn Frames in Hilbert Modules over Pro-c-algebras
We introduce the concept of frame of multipliers in Hilbert modules over pro-C∗-algebras and show that many properties of frames in Hilbert C∗-modules are valid for frames of multipliers in Hilbert modules over proC∗-algebras.
متن کاملمنابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ذخیره در منابع من قبلا به منابع من ذحیره شده{@ msg_add @}
عنوان ژورنال
دوره 8 شماره 2
صفحات 1- 20
تاریخ انتشار 2012-01-01
با دنبال کردن یک ژورنال هنگامی که شماره جدید این ژورنال منتشر می شود به شما از طریق ایمیل اطلاع داده می شود.
میزبانی شده توسط پلتفرم ابری doprax.com
copyright © 2015-2023